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Quasi-phase matching facilitates the phase matching of any parametric interaction by setting an appropriately
modulated period. We propose a dual-periodic structure that is used in the construction of a frequency-
conversion device. For example, we have designed and fabricated such a dual-periodic structure in a LiTaO3
crystal. Using a fundamental source at 1.064 mm, we obtained ultraviolet radiation at 355 nm and green
radiation at 532 nm simultaneously by frequency tripling and frequency doubling the fundamental source.
Theoretically, this idea can be further extended to the design of a multiperiodic structure for achievement of
more quasi-phase-matched processes in a single optical superlattice. © 2002 Optical Society of America
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1. INTRODUCTION
Since quasi-phase matching (QPM) was devised indepen-
dently by Armstrong et al.1 and by Franken and Ward,2

the theory of QPM has been useful in the realm of peri-
odic optical superlattices and has opened a novel research
field in nonlinear optics. Based on the theory of QPM,
periodic domain structure has wide applications not only
for second-harmonic generation (SHG),3–5 sum-frequency
generation (SFG),6 difference-frequency generation,7 and
optical parametric oscillators8 but also for new fields such
as generation of squeezed light for optical communication
and information processing9 and optical solitons.10 At
the same time, efforts have been concentrated on finding
the potential applications of quasi-periodic optical
superlattices11–15 (QPOSs) in coupled optical parametric
processes.

Although it gives a complete solution of the phase-
matching problem for any specific interaction, the peri-
odic structure generally fails to solve the problem for
some efficient coupled interactions. Coupled interaction
consists of two or more separate but cascaded parametric
processes. The achievement of efficient coupled interac-
tion requires that all parametric processes be phase
matched simultaneously in a superlattice crystal. Al-
though a periodic structure may provide a set of recipro-
cals for QPM interactions, it generally fails to provide
such a set of reciprocals simultaneously for each different
QPM interaction because its reciprocals are all integral
multiples of the primitive vector, whereas the crystal’s
dispersion depends nonlinearly on the frequency.

To solve this problem, Zhu et al. proposed application of
a quasi-periodic structure to a QPM coupled parametric
process because such a structure has plentiful reciprocals
and the ratio of different reciprocals is irreducible. The
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first experimental realization of the QPM coupled para-
metric process of which we are aware was achieved in
1997.11 In that demonstration, efficient third-harmonic
green light was generated in a Fibonacci optical superlat-
tice of LiTaO3 (LT) by coupling of SHG and SFG. Since
then, various kinds of complex structure, including
Fibonacci,12–14 Thue–Morse,16 intergrowth,17 and
aperiodic18 structures, have been explored. Multiple-
peak frequency doubling and quadrupling with a single
crystal with a structure sequence that coincidentally
phase matches several processes simultaneously at some
fundamental wavelength were also demonstrated.19 The
same problem was ultimately solved recently in a general
two-component quasi-periodic structure by the projection
method proposed by Zhang et al.20 and Keren et al.13 In
this structure one selects the ratio of reciprocals by
changing the projection angle such that the structure can
simultaneously provide two reciprocals to compensate for
phase mismatching of two separate parametric processes,
which makes the processes quasi-phase matched. There-
fore quasi-phase-matched third-harmonic generation
(THG) can be attained in the superlattice for an arbitrary
fundamental wavelength.

In this paper we introduce another novel structure, a
dual-periodic structure, in which two optical parametric
interactions are coupled into a single superlattice crystal.
Compared with other structures, this one provides clearer
physical sight into and great design flexibility for quasi-
phase-matched coupled parametric processes. The de-
sign of this structure can be achieved in both real space
and reciprocal space for a typical coupled parametric pro-
cess, i.e., THG. For example, we designed and fabricated
such a dual-periodic domain-reversal structure in a LT
crystal, and the primary experimental result was pre-
sented at the same time.
2002 Optical Society of America
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2. THEORY
A. Wave Equations Describing Third-Harmonic
Generation
It is well known that generation of high-order harmonics
requires cascading a couple of second-order nonlinear in-
teractions, such as THG, which is generated through two
processes, SHG and SFG. Traditionally, these two pro-
cesses are achieved in two homogeneously nonlinear crys-
tals or in two separate optical superlattices. In this pa-
per we demonstrate that THG can be efficiently achieved
in a dual-periodic superlattice by a coupled parametric
process. The following equations describe the processes
mentioned above:

dA1

dx
5 ik2A3A2* exp~2iDk2x !

2 ik1A2A1* exp~2iDk1x !,

dA2

dx
5 2ik2A3A1* exp~2iDk2x !

2
i

2
k1A1

2 exp~iDk1x !,

dA3

dx
5 2ik2A1A2 exp~iDk2x !, (1)

where wave amplitude Ai 5 (ni /v i)
1/2Ei (i 5 1, 2, 3) rep-

resent the fundamental, the second harmonic (SH), and
the sum frequency (SF), respectively; Dk1 and Dk2 are the
wave-vector mismatches of SHG and SFG, respectively,
and

Dk1 5 k2Ã 2 2kÃ 2 Gm,n ,

Dk2 5 k3Ã 2 k2Ã 2 kÃ 2 Gm8,n8 , (2)

where k1 , k2 , and k3 represent the wave vectors of the
fundamental, the SH, and the SF and Gm,n and Gm8,n8
are the reciprocals of the superlattice. k1 and k2 in Eqs.
(1) are two coupling coefficients, and they are represented
as follows:

k1 5
dm,n

c S v2v1
2

n2n1
2 D 1/2

k2 5
dm8,n8

c S v3v2v1

n3n2n1
D 1/2

, (3)

where n1 , n2 , n3 , and v1 , v2 , v3 are the refractive in-
dices and the angular frequencies of the fundamental, the
SH, and the third harmonic (TH), respectively, and c is
the speed of light in free space. k1 and k2 are propor-
tional to the effective nonlinear coefficients of superlat-
tices dm,n and dm8,n8 , and m, n and m8, n8 are integers.
In theory, it has been verified that efficient quasi-phase
matched THG depends not only on the magnitude of these
two coupling coefficients but also on their ratios.21 The
ratio determines the ultimate energy distribution among
the three waves. For THG there are following boundary
conditions: A1(0) 5 A10 , A2(0) 5 0, and A3(0) 5 0. In
Eqs. (1) there are five distinct parametric processes: one
SH, one SF, and three difference-frequency processes. If
Dk1 and Dk2 are not equal to zero, these five parametric
interactions and their coupling are relatively weak and
the energy of fundamental cannot be efficiently trans-
ferred to the SH and the TH. If, however, Dk1 5 Dk2
5 0, that is, if two QPM conditions of SHG and SFG are
satisfied simultaneously, the situation will be quite differ-
ent: Five parametric processes all can proceed effi-
ciently, and the coupling of the three waves will be greatly
enhanced. The energy conversion can efficiently proceed
in the superlattice.

B. Achievement of Third-Harmonic Generation in a
Dual-Period Optical Superlattice
From what has been discussed above, the most important
way to achieve highly efficient THG is to construct a
structure that may provide two reciprocals to compensate
for the mismatches of SHG and SFG and make these two
processes quasi-phase matched. One can obtain the re-
quired reciprocals by designing an appropriate domain-
inverted sequence in a superlattice. Fourier transforma-
tion is a method in common use for analysis of the
distribution of reciprocals and their magnitudes in wave-
vector space. The Fourier spectrum of a one-dimensional
periodic optical superlattice (POSL) can be written as

FPOSL~x ! 5 (
m

fm exp~iGmx !, (4)

with reciprocals

Gm 5 2pm/L, m 5 1, 2, 3 ... (5)

and Fourier coefficients

fm 5
2

mp
sinS mp

2 D . (6)

Fig. 1. Dual-period QPM structure formed by modulation twice
upon a periodic grating. (a) Ratio L/l is an integer. (b)
Amended method for obtaining a dual-periodic structure with the
ratio of l to L unmeasurable.
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Fig. 2. Fourier spectrum of the four dual-periodic structures. The two reciprocals marked are used for SHG and SFG (left to right).
Equation (5) shows that a periodic structure can pro-
vide a set of reciprocals (Gm , m 5 1, 2, 3 ...) in which
each is an integer of a primitive vector G1 . The struc-
ture’s magnitude, Fourier coefficient fm , is in proportion
to the corresponding effective nonlinear coefficient of the
periodic structure, dm 5 fmd, where d is the nonlinear
coefficient of the crystal. Generally, the ratio of wave-
vector mismatches of SFG and SHG is not an integer ow-
ing to dispersion, so the periodic structure seldom satis-
fies the general QPM conditions of SHG and SFG
simultaneously.

To solve the problem we propose using a general two-
component quasi-periodic optical superlattice (QPOSL).
This one-dimensional quasi-periodic structure may be
considered the projection of a two-dimensional square
structure on a straight line, and the arrangement of its
two elementary components depends on projection angle
u. The sequence and therefore its reciprocals can be
changed through adjustment of angle u. The Fourier
spectrum of this structure is

FQPOSL~x ! 5 (
m,n

fm,n exp~iGm,nx !, (7)

with reciprocals

Gm,n 5
2p~m 1 nt!

D
(8)

and Fourier coefficients
fm,n 5 2
~1 1 t!l

D

sin~Gm,nl/2!

Gm,nl/2

sin~Xm,n!

Xm,n
, (9)

Xm,n 5 pD21t 2~mlA 2 nlB!, (10)

D 5 tlA 1 lB ; (11)

m and n are integers; D is an average structural param-
eter; lA and lB are two elementary components, and both
consist of a pair of inverse polarizations; l presents the
width of positive polarization in lA and lB ; and t
5 tan u is an adjustable parameter. Because the quasi-
periodic structure has more-abundant reciprocals than
the periodic structure has, and among them there are two
reciprocals that one can independently design by chang-
ing projection angle u, QPM can be simultaneously
achieved in two different parametric processes, such as
SHG and SFG, in the same quasi-periodic optical super-
lattice.

A dual-periodic structure was introduced into a super-
lattice based on a similar object. It permits more flexibil-
ity in the choice of reciprocals than does a quasi-periodic
structure. The dual-periodic structure is formed by
twice-periodic modulation. We label these two modu-
lated periods l and L, where l , L [Fig. 1(a)]. Two peri-
odically modulated sequences, F1(x) and F2(x), can be
extended into two Fourier series:

F1~x ! 5 (
m52`

`

fm exp~2iGmx !,
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F2~x ! 5 (
n52`

`

fn exp~2iGnx !. (12)

Therefore the dual-periodic structure can be written as

F~x ! 5 F1~x !F2~x !

5 (
m,n52`

`

fmfn exp@2i~Gm 1 Gn!x#

5 (
m,n52`

`

fmn exp~2iGm,nx !, (13)

where Gm,n 5 Gm 1 Gn and fm,n 5 fmfn . Thus the re-
ciprocals of this dual-periodic structure can be expressed
as

Gm,n 5 Gm 1 Gn 5 mGl 1 nGL , (14)

where Gl 5 2p/l and GL 5 2p/L are the first-order re-
ciprocals of these two modulated periods. Integers m and
n label the order of reciprocals. Because these two peri-
ods, l and L, are independent of each other, the structure
can provide two independent reciprocals to compensate
for the phase mismatches of two different parametric pro-
cesses, making them simultaneously quasi-phase
matched.

Fig. 3. (a) Evolution of the three waves in a dual-periodic struc-
ture. The larger period L of the dual-periodic structure is
marked at the top. (b) Efficiencies of SHG and THG versus
A10L in a periodic structure (period l 5 6.77 mm, L 5 50.86
mm).
C. Third-Harmonic Generation in a Dual-Periodic
Optical Superlattice
Here we show how to achieve THG in a dual-periodic op-
tical superlattice (DPOSL). The third-harmonic can be
generated by coupling of SHG and SFG in a quadric non-
linear medium; therefore the QPM condition for THG in a
DPOSL for collinear interaction is

Dk1 5 k2 2 2k1 2 Gm,n 5 0 (15)

for SHG and

Dk2 5 k3 2 k2 2 k1 2 Gm8,n8 5 0 (16)

for SFG, where Gm,n and Gm8,n8 are two predesigned re-
ciprocals of the DPOSL. According to Eqs. (14)–(16),

Gm,n 5 mGl 1 nGL 5
4p

l
~n2 2 n1! 5

2pm

l
1

2pn

L
,

Gm8,n8 5 m8Gl 1 n8GL 5
2p

l
~3n3 2 2n2 2 n1!

5
2pm8

l
1

2pn8

L
. (17)

Here l is the fundamental wavelength, and n1 , n2 , and
n3 are the refractive indices of the fundamental, the SH,
and the TH, respectively, of the nonlinear crystal. m8
and n8 are integers like m and n.

Fig. 4. Same as in Fig. 3, except that here l 5 5.67 mm and
L 5 25.42 mm.
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Fig. 5. Same as in Fig. 3, except that here l 5 6.34 mm and L
5 101.67 mm.

Fig. 6. Same as in Fig. 3, except that here l 5 6.58 mm and
L 5 127.08 mm.
If the fundamental wavelength is chosen to be a specific
wavelength by selection of appropriate values of m, n, m8,
and n8 one can determine the two main parameters of the
dual-periodic structure (l and L) from Eqs. (14)–(16).
Here a THG of 1064 nm in a LT DPOSL is shown. All
parameters are designed for a phase-matching tempera-
ture of 50 °C.

Without loss of generality, we select various values
of m, n, m8, and n8, consisting of four sets of different
dual-periodic structure. They are (a) m 5 1, n 5 21,
m8 5 3, n8 5 1, l 5 6.77 mm, and L 5 50.86 mm; (b)
m 5 1, n 5 21, m8 5 3, n8 5 21, l 5 5.67 mm, and
L 5 25.42 mm; (c) m 5 1, n 5 23, m8 5 3, n8 5 21,
l 5 6.34 mm, and L 5 101.67 mm; and (d) m 5 1,
n 5 23, m8 5 3, n8 5 1, l 5 6.58 mm, and L 5 127.08
mm. Fourier spectra of these structures are shown in
Fig. 2. We can see that the heights of the two reciprocal
vectors are unequal when m 5 n and m8 5 2n8 because
of the shift of the second modulated sequence to one di-
rection. The evolutions of the three waves in these four
structures in Figs. 2(a), 2(b), 2(c), and 2(d) are shown in
Figs. 3(a), 4(a), 5(a), and 6(a), respectively. Some param-
eters of these four structures are listed in Table 1. We
can see that the maximum conversion efficiency of THG
in Fig. 5(b) is higher than the others because the ratio
(1.388) of the corresponding two Fourier coefficients is
closer than the others to the optimum ratio (1.464).21

However, it is obvious that the conversion speed of the TH
is slower than those for the other cases at a low input
power or for a short sample lengths. Therefore, for high
THG efficiency the selection of structure parameters
should be related to the crystal length and the power den-
sity of the fundamental wave. The situation may occur
in any three-wave coupling parametric process. The re-
sult shows that a DPOSL provides additional feasibility
for high THG efficiency because of its improved structure
design.

We can also analyze the coupled parametric process in
real space to get the spatial variation of the conversion ef-
ficiency. Figure 7 shows the spatial variations of SH and
TH intensities for phase mismatching in a homogeneous
crystal. It can be seen that alternating the sign of the
power flow leads to repetitive growth and decay of the SH
and the SH intensities along the length of the interaction.
Obviously the conversion coefficients of SHG and THG
here are low. The half-period of fluctuation is called the
coherence length. If the superlattice is a periodic struc-
ture and its period is equal to twice the coherence length
of SHG, the QPM condition for SHG is satisfied. In other
words, efficient SHG can be achieved in a single periodic
domain-inverted structure. In this case the output of
THG still fluctuates spatially as a result of the phase mis-
matching of SFG processes, however, the period of fluc-
tuation increases and is longer than that in a homoge-
neous crystal (as shown in Fig. 7). Practically, the design
of a DPOSL for THG has the following two steps: In the
first step we fix the two phase mismatches of SHG and
SFG at the same magnitude, that is, aDk1 5 bDk2 ,
where a, b 5 61, 62, 63 ..., with a periodic structure l.
In the second step we modulate the first periodic grating
by using a longer period L [Fig. 1(a)], so the phase mis-



Liu et al. Vol. 19, No. 7 /July 2002 /J. Opt. Soc. Am. B 1681
Table 1. Parameters of Four Dual-Periodic Superlattices and Their Relationship to One Another

l
(mm)

L
(mm)

Reciprocal Vector
Used in

SHG(Gm,n)

Its Corresponding
Fourier

Coefficient
( fm,n)

Reciprocal Vector
Used in

THG(Gm8,n8)

Its Corresponding
Fourier

Coefficient
( fm8,n8)

Ratio of the Two
Fourier Coefficients

( fm,n /fm8,n8)

Figure That Shows
the Evolution

of the Three Waves

6.77 50.86 G1,21 0.4483 G3,1 0.1242 3.610 3(a)
5.67 25.42 G1,21 0.4600 G3,21 0.1275 3.608 4(a)
6.34 101.67 G1,23 0.1487 G3,21 0.1071 1.388 5(a)
6.58 127.08 G1,23 0.1368 G3,1 0.1186 1.153 6(a)
match of SHG and SFG can be compensated for simulta-
neously in an a-order QPM scheme and a b-order QPM
scheme, respectively.

We take the four DPOSLs mentioned above as ex-
amples. First we choose a certain modulating periodic l
based on a 5 1 and b 5 21; thus, at every point where
the integer time is l, the phase mismatches of these two
processes have the same magnitude but opposite sign.
The little peaks in the SHG curve correspond to the
points where the nonlinear coefficient of the crystal
changes its sign. The spatial variations of the conversion
efficiencies of SHG and THG in the depleted fundamental
are illustrated in Fig. 3(a). In this case the efficiency of
SHG fluctuates with a long period L along the crystal
length, and the efficiency of THG increases gradually like
a set of stairs with the same period L. At every point of
integer time L the mismatch of SHG and SFG has the
same magnitude. By modulating a smaller structure
with period L as shown in Fig. 3(a), one can correct the
phase mismatches of SHG and SFG simultaneously. The
resulting spatial variations of the conversion efficiencies
of SHG and THG in the dual-periodic structure are dis-
played in Fig. 3(b). The ultimate pattern of the dual-
periodic structure might be as shown in Fig. 1(a). The
two main parameters of the dual-periodic structure are
l 5 6.77 mm and L 5 50.86 mm. Because the ratio of l
and L is usually unmeasurable, to avoid the appearance
of a small amount of domain chirp one may adopt an
amended method; that is, one may shift the boundary of
each modulated sequence to the closest domain wall [Fig.
1(b)]. Therefore the mean value of the period of the
modulating sequence is still equal to L although each
modulating period is not exactly L.

Different dual-periodic structures can be induced
through choice of various-order QPM schemes in SHG

Fig. 7. Evolution of SHG and THG versus parameter A10L in a
homogeneous LT crystal.
and SFG. For Fig. 4 we chose a 5 b 5 1 and l 5 5.67
mm for the first periodic structure. The mismatch in
SHG of first-order QPM is equal to that in SFG of third-
order QPM in this periodic structure. The figure shows
that the spatial evaluations of SHG and THG have the
same period. Then by selecting this oscillation period as
the second modulated period (L 5 25.42 mm) we build a
new dual-periodic structure. The relation of the conver-
sion efficiency of SHG and THG to the crystal length in
this dual-periodic structure is shown in Fig. 4(b). For
Fig. 5 we chose a 5 1, b 5 3, and l 5 6.34 mm. In these
conditions the mismatch in SHG of first-order QPM is
three times of that in SFG of third-order QPM. The SHG
and THG conversion efficiencies in the first period are
structured as in Fig. 5(b). Modulating the first grating in
the larger period L (101.67 mm) can compensate for the
mismatch in the two processes simultaneously through
third-order and first-order QPM, respectively. Figure 6
illustrates another case for which a 5 1, b 5 23,
l 5 6.58 mm, and L 5 127.08 mm, and the evolution of
the three waves in this structure is shown in Fig. 6(a).

3. MULTIPERIODIC OPTICAL
SUPERLATTICE EXTENDED FROM A
DUAL-PERIODIC OPTICAL SUPERLATTICE
Based on a similar theory, the DPOSL can be extended to
become a multiperiodical optical superlattice (MPOS),
which is more flexible than a DPOS in the choice of recip-
rocals because of its more readily tunable parameters.
Given a general definition of their similarity, a MPOS is
fabricated by nth periodic modulation. The Fourier
transform of each one of n periodically modulated se-
quences Fj(x) can generally be expressed as a Fourier se-
ries:

Fj~x ! 5 (
m52`

`

fm
~ j ! exp~2iGm

~ j !x ! ~ j 5 1, 2, 3 ... n !.

(18)

Therefore the MPOS can be given as

F~x ! 5 F1~x !F2~x ! ... Fn~x !

5 (
m52`

`

fm
~1 !fm

~2 ! ... fm
~n !

3 exp@i~Gm
~1 ! 1 Gm

~2 ! 1 ... Gm
~n !!x#

5 (
m,n52`

`

fM exp~2iGMx !, (19)
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where GM 5 ( i51
n Gm

(i) and fM 5 ) i51
n fm

(i). The recip-
rocals of this multiperiodic structure can be expressed as

GM 5 (
i51

n

Gmi
~i ! 5 (

i51

n

miGli
, (20)

where li is the modulated period, and Gli
5 2p/li is the

first-order reciprocal of every modulated period. Integers
mi label the order of reciprocals. In addition, periodic
and quasi-periodic modulation can be mixed in the same
structure in a similar way. More QPM processes can be
expected to occur simultaneously in this MPOS.

4. EXPERIMENT
In a sample experiment we fabricated one kind of dual-
periodic domain-reversal structure (l 5 6.77 mm, L
5 50.86 mm) in a z-cut LT wafer through an electric field
that was poled at room temperature.22,23 The sample
had a thickness of ;0.5 mm and a total length of ;12
mm. An optical photograph of a LT DPOSL revealed by
etching is shown in Fig. 8.

An infrared 1064-nm laser was generated from a
Nd:YVO4 crystal pumped by an 808-nm laser diode.
Modulation with an acoustic-optical Q switch produced a
quasi-cw laser with a pulse duration of 150 ns and a rep-
etition rate of 13 kHz. The fundamental wave was fo-
cused into a beam, the radius of whose waist was ;0.2
mm, and coupled into the polished but uncoated end face
of the sample. The focus of the lens was 50 mm. Both
fundamental and harmonic waves were polarized along
the z axis of crystal and transmitted along the x axis of
the LT wafer. The sample was heated in a heater (Model
OTC-PPLN-20, Super Optronics Ltd.) and tuned to the
appropriate phase-matching temperature with an accu-
racy of 0.1 °C. We determined the nonlinear optical fea-
tures of the sample by measuring the powers of the SH
and the TH relative to the QPM temperature and input
power of the fundamental.

Figure 9(a) shows the output of SHG and THG as a
function of temperature. The phase-matching tempera-
tures are located at 50.5 °C for SHG and at 49.0 °C for
THG. At an average fundamental power of 1.1 W, the
maximum output power of SHG and THG is 95 and 3.6
mW, respectively. Owing to Fresnel reflection of ;13%

Fig. 8. Optical micrograph of a dual-periodic superlattice as re-
vealed by etching (1c).
on the front surface of the sample, the actual fundamen-
tal average power transmitted into the sample was ;0.96
W. The fact that the SHG and THG peaks do not overlap
may originate from the precise pattern of the lithographic
mask or the deviation of the Sellmeier equation used for
the LT crystal or both. Figure 9(b) shows that the SHG
and THG power increases gradually with increasing fun-
damental power at the operating temperature of 49 °C.
When the fundamental average power was tuned to 1.56
W, ;10 mW of UV light was generated. Because this

Fig. 9. (a) Average powers of SH and TH fields versus tuned
temperature. The average power of the fundamental field is 1.1
W. (b) Average powers of SH and TH fields versus average
power of the fundamental field. The sample temperature is con-
stant at 39 °C.

Fig. 10. Temporal behavior of the UV light output during a 10-
min period.
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temperature is not a perfect phase-matching temperature
for SHG, the SHG power at this fundamental power level
is just 120 mW, i.e., lower than 300 mW at 50.5 °C.

The measured THG efficiency is far below the theoret-
ical value estimated by solution of the coupled equations
with fundamental depletion. The reasons may be as fol-
lows: First, the peak temperatures of SHG and THG did
not overlap, which indicates that the QPM conditions for
frequency doubling and frequency adding were not per-
fectly satisfied simultaneously the measured sample. At
the peak temperature during THG the efficiency of SHG
was ;8% for the same measurement conditions. Be-
cause the SF efficiency is in proportion to the intensity of
the SH, there was a sharp decrease in THG efficiency
from that expected. Second, because the phase-matched
temperature for the superlattice is 50 °C, the photorefrac-
tive effect in the short-wavelength region was still strong
for the LT crystal, which resulted in changes in refractive
index and in degradation of laser beam quality inside the
crystal directly at the fundamental power level given
above. Therefore the phase mismatches and conversion
efficiency decreased.

To avoid the influence of the photorefractive effect, we
redesigned the structure parameters and made the phase
matching temperature for the new structure near 100 °C.
A 21-mW UV output was obtained for 758-mW average
fundamental power with an internal conversion efficiency
of ;2.8%. The output was fairly stable throughout the
whole experiment, which lasted for 2 h. No obvious deg-
radation was observed. A temporal UV trace recorded for
5 min at an output power of ;19 mW is shown in Fig. 10.
Measurements were made at 30-s intervals. The relative
standard deviation was ;2.9%. These results demon-
strate that the photorefractive effect is negligible at the
operating temperature and power level.

5. CONCLUSIONS
We have presented a new kind of dual-periodic superlat-
tice that can be used in various coupled optical paramet-
ric processes and have illustrated the designation of a fre-
quency tripler that uses this structure. An optical
LiTaO3 superlattice with a dual-periodic domain-reversal
structure was fabricated and tested. The structure
achieved third-harmonic generation at 355 nm by tripling
of an all-solid-state quasi-cw 1064-nm Nd:YVO4 laser in a
cascaded quasi-phase-matching scheme. Theoretically,
the scheme has a higher efficiency and should produce a
simpler light path for frequency tripling than a tradi-
tional scheme in which two bulk crystals or periodic su-
perlattices are used in series. Owing to its greater feasi-
bility for material design, the dual-periodic superlattice
may have potential applications in many frequency-
conversion devices.
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